Risk Factors Associated with Private Well Contamination in Kewaunee County, Wisconsin

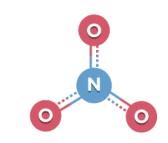
Mark Borchardt, Ph.D.

Laboratory for Infectious Disease and the Environment USDA-Agricultural Research Service USGS Upper Midwest Water Science Center Sue Spencer, USDA-Agricultural Research Service

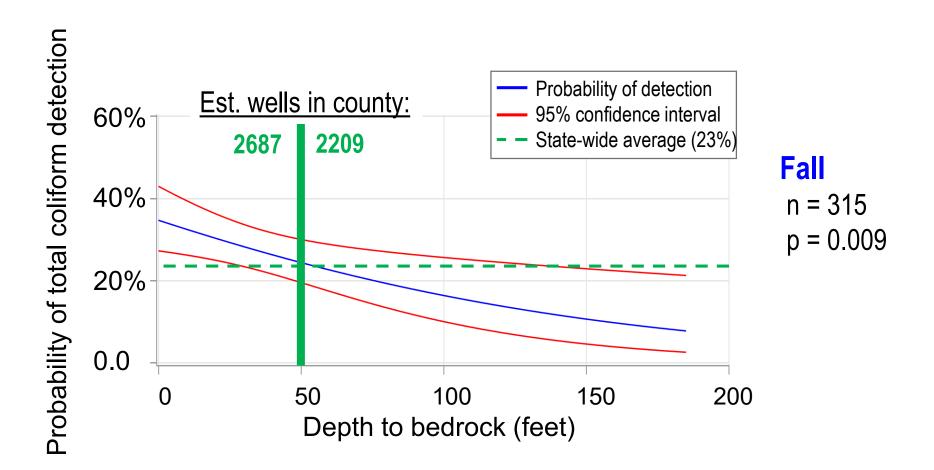
- Maureen Muldoon, UW-Oshkosh Department of Geology
- Randall Hunt, Joel Stokdyk, Aaron Firnstahl & Dave Owens
- USGS Upper Midwest Water Science Center
- **Davina Bonness** Kewaunee County Land and Water Conservation
- Burney Kieke Marshfield Clinic Research Institute

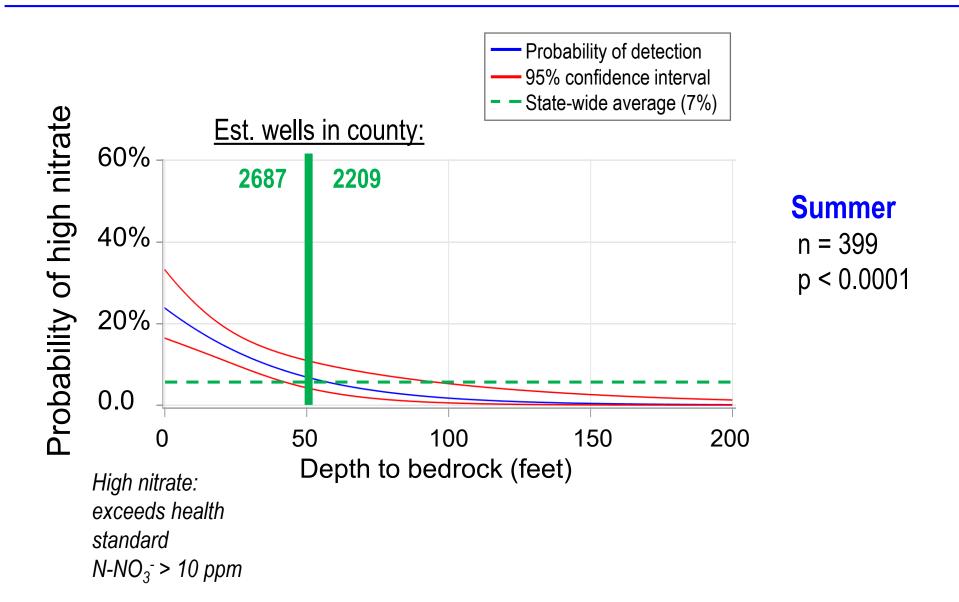
United States Department of Agriculture

Research Objectives


- Estimate county-wide contamination rate for nitrate and indicator bacteria as related to depth-to-bedrock
- 2. Determine source of fecal contamination using viruses and fecal markers
- 3. Identify risk factors for private well contamination using statistical models

Objective I: Total Coliform, E. coli, Nitrate


- County-wide randomized sampling of private wells – 4,896 in county
- Stratified by depth-to-bedrock:
 - Less than 5 feet
 - 5-20 feet
 - Greater than 20 feet
- Participation rate ~ 50%
- Sampled twice:
- November 2015
 - 317 wells in analysis
- July 2016
 - 400 wells in analysis



Effect of depth to bedrock on total coliform contamination

Effect of depth to bedrock on nitrate contamination

Objective 2: Determine fecal source

- Randomized stratified sampling from 208 wells positive for total coliform, *E. coli*, or high nitrate (N-NO₃⁻ > 10 ppm)
- Five sampling rounds:
 - April, August, November, 2016
 - January and March, 2017

Study Sampling and Analyses

- Collected 138 samples from 131 household wells in Kewaunee County
- Pump ~800 L through hemodialysis filters
- qPCR for microbial genetic targets
 - Human-specific microbes
 - Bovine-specific microbes
 - Non-specific microbes (pathogens of both people and cattle)

Microbes: Identifying the Fecal Source

(n = 138 samples from 131 wells) (red font indicates pathogenic)

Host	Microorganism	Wells
	Adenovirus A	1
	Bacteroidales-like Hum M2	7
Human-	Human <i>Bacteroides</i>	27
specific	Cryptosporidium hominis	1
	Rotavirus A (G1 P[8])	7
	Any human microbe	33

Not detected: [human-specific] adenovirus B & C, D, F, enterovirus, human polyomavirus, norovirus GI & GII [bovine-specific] coronavirus, bovine diarrheal virus 1 & 2

Microbes: Identifying the Fecal Source

(n = 138 samples from 131 wells) (red font indicates pathogenic)

Host	Microorganism	Wells
Bovine-	Bacteroidales-like Cow M2 Bacteroidales-like Cow M3 Ruminant Bacteroides Bovine polyomavirus	2 4 36 8
specific	Bovine enterovirus Rotavirus A (G10 P[11]) Any bovine microbe	1 12 44

Not detected: [human-specific] adenovirus B & C, D, F, enterovirus, human polyomavirus, norovirus GI & GII [bovine-specific] coronavirus, bovine diarrheal virus 1 & 2

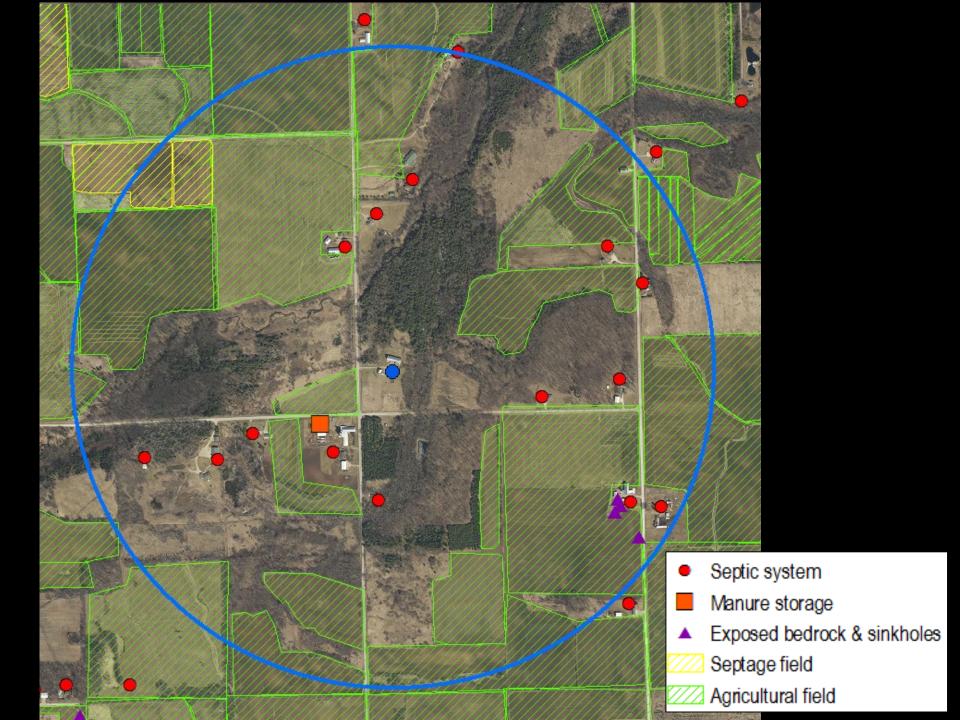
Well Contamination Scoreboard

Other Fecal Microbes (red font indicates pathogenic)

Host	Microorganism	Wells
	Campylobacter jejuni	1
	Cryptosporidium parvum	13
	Cryptosporidium spp.	2
	Giardia lamblia	2
	Pathogenic <i>E. coli</i> (eae gene)	1
Non-	Pathogenic E. coli (stx1 gene)	1
specific	Pathogenic E. coli (stx2 gene)	1
	Pepper mild mottle virus	13
	Rotavirus C	3
	Salmonella (invA gene)	3
	Salmonella (ttr gene)	5
	Any non-specific microbe	37
	Total fecal positive wells	79

Objective 3: Identify Contamination Risk Factors

Why do this?


- Understand what might be the <u>causes</u> of contamination
- Understand how a <u>change</u> in risk factor magnitude affects the magnitude of contamination
- Provide policymakers and stakeholders with options for contamination <u>prevention</u>; Examples:
 - Setback distances
 - Allowable density or number of contamination sources
 - Vulnerable periods related to weather
 - Well construction best practices

Risk Factors Investigated

Land Use – Distance; count or acres within	750, 1500, 3000 feet of well
Agricultural	Septic Systems
Agricultural fields	All septic types
Fields with NMPs	Drain fields
Manure storages	Not inspected systems
	Septage-applied fields
Bedrock Features – Count within 750, 1500 Sinkholes Bedrock ledges at the surface) and 3000 feet of well
Precipitation – 2, 7, 14, 21 days prior to sar Rainfall (cumulative, no snowfall)	mpling
Groundwater Recharge – 2, 7, 14, 21 days Groundwater recharge (cumulative)	prior to sampling

Depth to groundwater (median & minimum)

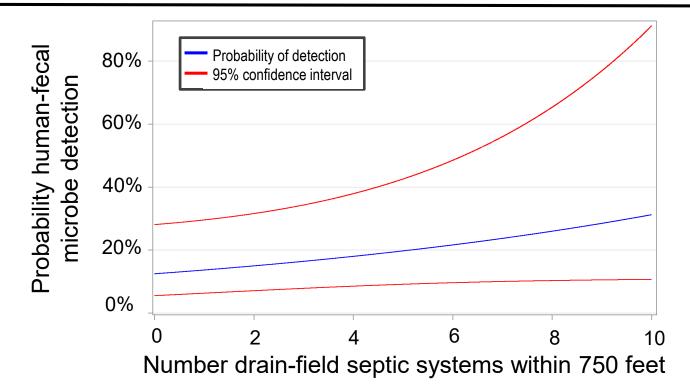
Depth to Bedrock

Risk Factor Data Sources

Groundwater depth (monitoring well)

Rainfall data

Well characteristics (construction report)


Well (WISCON	Construction Report For SIN UNIQUE WELL NUMBER	MX583
Property Owner		Telephone Number
Mailing Address		10- 10-
City State Zin Code		

Risk Factors for Human Fecal Contamination – Detection Probability

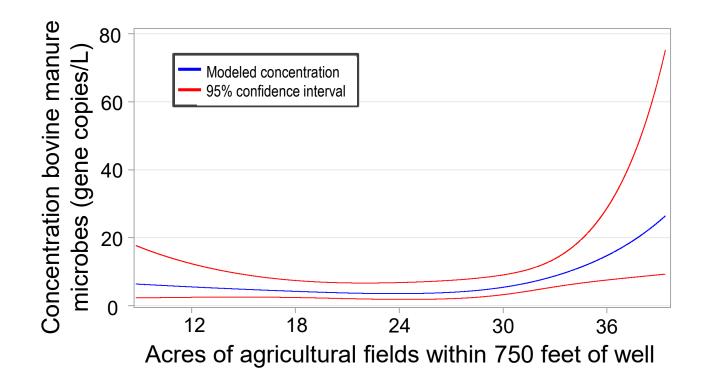
Four Significant Risk Factors

- 1. Number of septic system drain-fields within 750 feet of well
- 2. Rainfall total previous 2 days
- 3. Depth to groundwater previous 14 days
- 4. Depth to bedrock

More septic systems around a well means greater risk for contamination by human fecal microbes

Model accounts for the effects of: Rainfall total previous 2 days Depth to groundwater previous 14 days Depth to bedrock

Risk Factors for Dairy Manure Contamination


Risk Factors – Detection of Manure Microbes

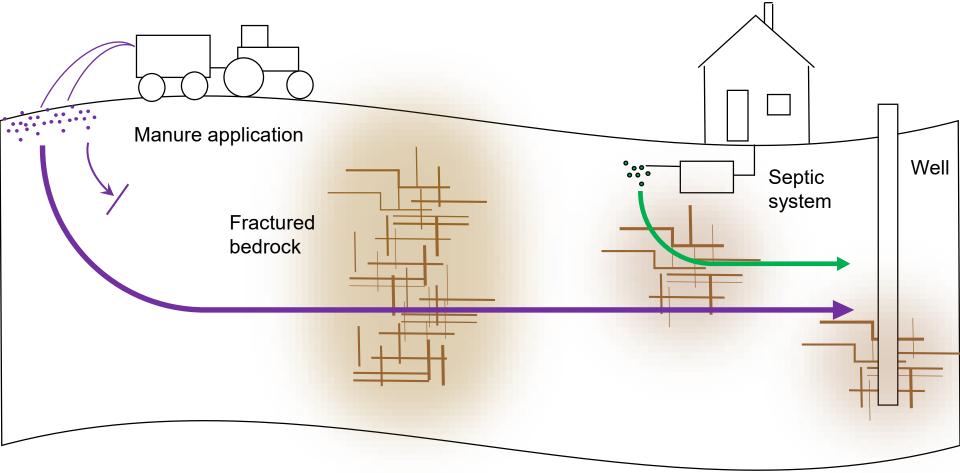
- Groundwater recharge total previous 7 days
 Surprising unimportant factors
- Agricultural-related risk factors were not significant

Risk Factors - Concentration of Manure Microbes in Wells

- Agricultural field area (number of acres) within 750 feet of well
- Depth to bedrock

Exceeding 30 acres of ag fields around a well is associated with higher concentrations of manure microbes in well water

Model accounts for the effect of: Depth to bedrock


Manure Application vs Septic Systems as Contamination Sources

Manure Source

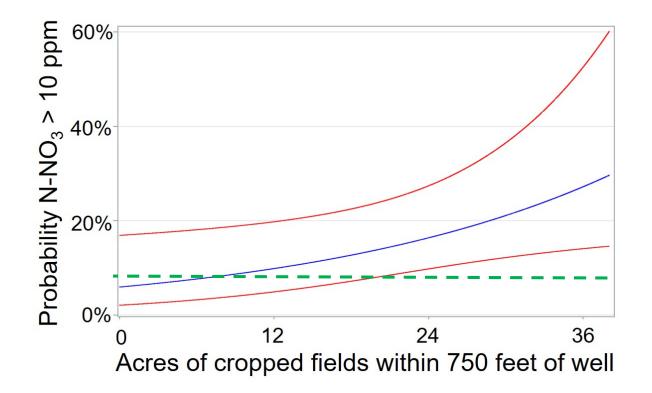
- Large fecal source
- Surface applied
- Variable application location, timing, and infiltration

Septic System Source

- Small fecal source
- Sub-surface release
- Constant location and release

Risk Factors for High Nitrate Detection -Fall and Summer Sampling

High nitrate: exceeds health standard; $N-NO_3^- > 10 \text{ ppm}$


Important factors

- Distance to nearest agricultural field
- Distance to nearest manure lagoon
- Distance to nearest cropped field
- Area of cropped fields (acres) within 750 feet of well
- Area of cropped fields (acres) within 1500 feet of well
- Depth to bedrock

Unimportant factors

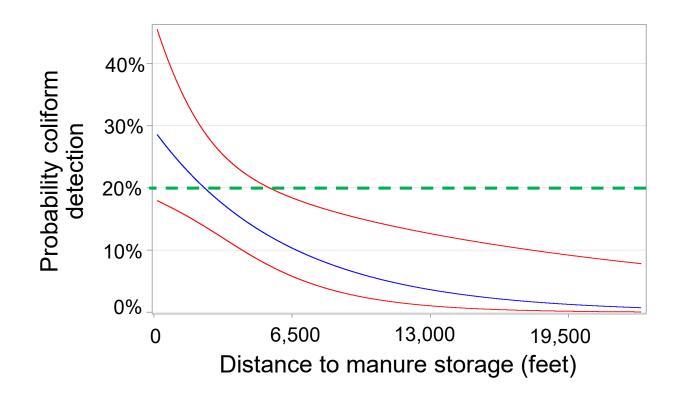
• Septic system variables were all not significant

More crop land around a well means greater risk for contamination by high nitrate

Model accounts for the effects of: Distance to nearest cropped field Distance to manure lagoon Depth to bedrock

Probability of detection
 95% confidence interval
 State-wide average (7%)

Risk Factors for Coliform Bacteria Detection -Fall and Summer Sampling


Important factors

- Distance to nearest manure lagoon
- Distance to nearest agricultural field
- Area agricultural fields (acres) within 750 feet of well
- Distance to nearest cropped field
- Area of cropped fields (acres) within 750 feet of well
- Depth to bedrock

Unimportant factors

• Septic system variables were all not significant

Wells located farther from manure storage are less likely to be contaminated with coliform bacteria

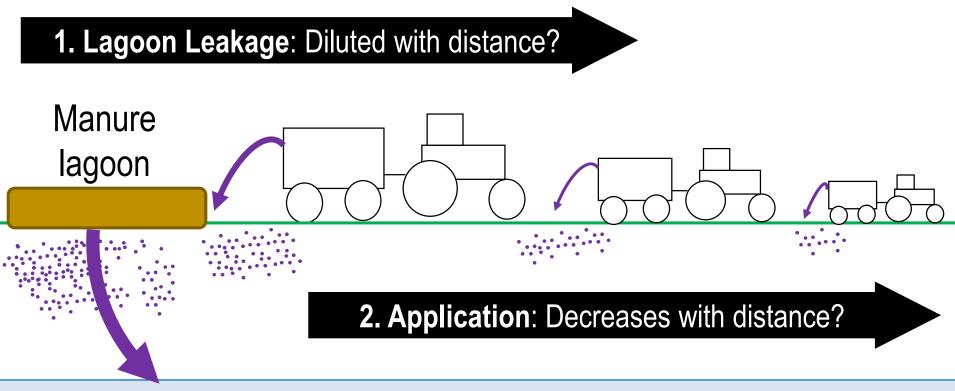
Model accounts for the effects of: Distance to nearest agricultural field Area of cropped fields within 750 feet of well Depth to bedrock

- Probability of detection
 95% confidence interval
- State average (~20%)

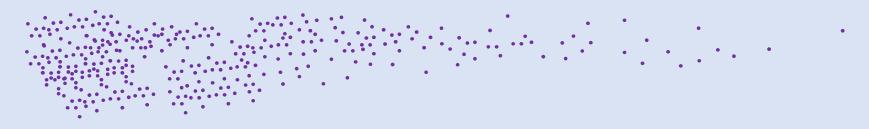
Private Well Contamination by **Any** Fecal Microbe is Related to:

- Distance to manure storage
- Number septic drain fields within 750 feet
- Rainfall total the previous 2 days
- Depth to bedrock

Kewaunee County Manure Storage

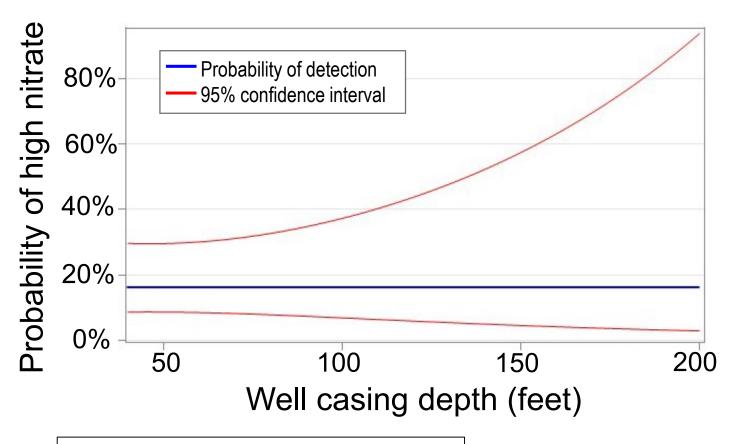

277 manure storage structures

- 219 lagoons
 - > 150 lagoons (approximately) are earthen
- 51 other types (e.g., under barn, wood wall)
- 7 storage type not specified


Estimated manure volume for 242 storages (gallons)

- Range: 13,000 to 20 million
- Mean = 2.1 million

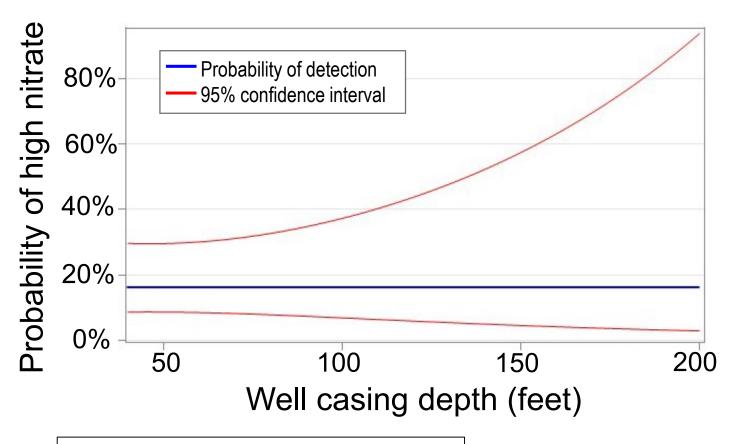
Groundwater contamination decreases with distance from manure lagoons: *Why?*


Groundwater contamination

Well Construction and Siting Risk Factors Investigated

- Well age
- Well depth
- Casing depth
- Length of casing into bedrock
- Length of casing below water table
- Open interval length
- Depth to groundwater at time of well construction
- Depth to bedrock
- Elevation at site
- Soil drainage at site

Well casing depth is NOT related to high nitrate detection ($N-NO_3^- > 10 \text{ ppm}$)

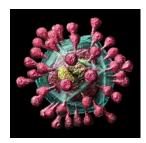

Model accounts for the effects of: Depth to bedrock

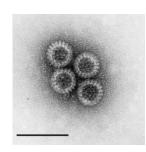
Data restricted to casing depths between 40 and 200 feet

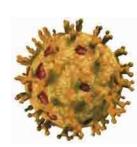
Well Construction and Siting Risk Factors Investigated

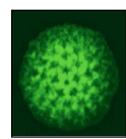
- Well age
- Well depth
- Casing depth
- Length of casing into bedrock
- Length of casing below water table
- Open interval length
- Depth to groundwater at time of well construction
- Depth to bedrock
- Elevation at site
- Soil drainage at site

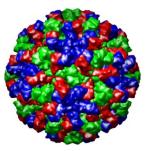
Well casing depth is NOT related to high nitrate detection ($N-NO_3^- > 10 \text{ ppm}$)


Model accounts for the effects of: Depth to bedrock


Data restricted to casing depths between 40 and 200 feet


Summary


- Well contamination is from both human and bovine sources.
- Wells are contaminated with pathogens of significant concern: Salmonella, EHEC, Cryptosporidium, rotavirus.
- Depths to bedrock less than 50 feet means coliform bacteria and high nitrate contamination are more likely than statewide contamination rates.
- Risk factors for well contamination are: septic system density, agricultural land use, manure storage, groundwater recharge, depth to groundwater, precipitation.
- Well construction is not very important.


Questions? Comments?

Risk Factor Highlights

- Septic system drain-fields within 750 feet of a well are related to human fecal contamination; an increase to 10 from 0 drain-fields increases contamination risk by 2.5times.
- Field area under nutrient management plans (i.e. cropped field) within 750 feet of a well is related to nitrate contamination; an increase to 40 acres from 0 acres increases risk 5-times
- Manure lagoon proximity is related to coliform bacteria contamination; contamination risk 3 miles from a lagoon is 10% of the risk level at the closest distance measured in the study, 151 feet.
- Fecal microbe contamination (human, bovine, no specific host) is related to manure lagoon proximity and number of septic system drain-fields within 750 feet